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BACKGROUND: There is limited and inconsistent evidence on the risk of ambient temperature on small for gestational age (SGA) and there are no
known related studies for large for gestational age (LGA). In addition, previous studies used temperature rather than a biothermal metric.

OBJECTIVES: Our aim was to examine the associations and critical susceptible windows of maternal exposure to a biothermal metric [Universal
Thermal Climate Index (UTCI)] and the hazards of SGA and LGA.

METHODS: We linked 385,337 singleton term births between 1 January 2000 and 31 December 2015 in Western Australia to daily spatiotemporal
UTCI. Distributed lag nonlinear models with Cox regression and multiple models were used to investigate maternal exposure to UTCI from 12 weeks
preconception to birth and the adjusted hazard ratios (HRs) of SGA and LGA.
RESULTS: Relative to the median exposure, weekly and monthly specific exposures showed potential critical windows of susceptibility for SGA and
LGA at extreme exposures, especially during late gestational periods. Monthly exposure showed strong positive associations from the 6th to the 10th
gestational months with the highest hazard of 13% for SGA (HR=1:13; 95% CI: 1.10, 1.14) and 7% for LGA (HR=1:07; 95% CI: 1.03, 1.11) at the
10th month for the 1st UTCI centile. Entire pregnancy exposures showed the strongest hazards of 11% for SGA (HR=1:11; 95% CI: 1.04, 1.18) and
3% for LGA (HR=1:03; 95% CI: 0.95, 1.11) at the 99th UTCI centile. By trimesters, the highest hazards were found during the second and first tri-
mesters for SGA and LGA, respectively, at the 99th UTCI centile. Based on estimated interaction effects, male births, mothers who were non-
Caucasian, smokers, ≥35 years of age, and rural residents were most vulnerable.
CONCLUSIONS: Both weekly and monthly specific extreme biothermal stress exposures showed potential critical susceptible windows of SGA and
LGA during late gestational periods with disproportionate sociodemographic vulnerabilities. https://doi.org/10.1289/EHP12660

Introduction
Small for gestational age (SGA) and large for gestational age
(LGA) are defined as birth weight < 10th and > 90th centiles,
respectively, with reference to population-based birth weight at
the same gestational age and sex.1 SGA and LGA are common
risk factors of perinatal mortality and various morbidities from
birth to adulthood. For example, the risk of neurodevelopmental
delay, cardiometabolic disorders, and immunologic dysregulation
are higher among births with SGA and LGA.2–5 Common risk
factors of SGA and LGA include fetal factors (e.g., genetic dis-
eases, male fetus), uteroplacental factors (e.g., structural placental
factors, reduced blood flow), and maternal factors or conditions
(e.g., race/ethnicity, smoking, maternal age).1 Moreover, expo-
sure to ambient and indoor air pollution,6,7 other chemicals,8,9

and, recently, climatic factors are modifiable environmental risk
factors of SGA and LGA of increasing interest.10,11

The increasing severity of the climate change crisis12 is
being recognized as a serious threat to reproductive health.13,14

Pathophysiologically, thermal stress exposures increase dehydration

and induce oxidative stress and systemic inflammatory responses,
leading to adverse reproductive and fetal health outcomes.15–17
Several recent observational studies reported on maternal exposure to
ambient temperature and pregnancy outcomes, such as pregnancy
complications, preterm birth, stillbirth, and low birth weight.11,18

However, related research is limited and with inconsistent findings on
SGA.10,19–21 ForLGA, to the best of our knowledge, related epidemio-
logic evidence is currently lacking in the literature, but this is now
receiving greater attention in air pollution epidemiology.22–24 It is im-
portant to investigate the association between climate change extremes
andLGA risk for actionable intervention given that LGA is also impli-
catedwithmany health outcomes throughout the life course.1,25–27

The timing of environmental exposure is clinically important
to determine the specific nature of the dose–response relationship
and critical environmental thresholds and windows.17,28 Previous
studies investigated average trimesters and entire pregnancy
exposures19–21 and could not detect fine temporal critical periods
of susceptibility of the exposure.28 In addition, regressing the
outcome on each of the three trimester-average exposures
increases the potential to yield biased estimates and identify incor-
rect critical windows.28 Distributed lag linear or nonlinear models
(DLNMs) were proposed to produce more accurate estimates and
for flexible identification of fine temporally resolved critical win-
dows.28–30 Among the few studies on ambient temperature and the
risk of SGA,10,19–21 only one study used this high-quality method
to assess weekly prenatal ambient temperature and heat index (am-
bient temperature and dew point) and the odds of SGA.10

Ambient temperature or apparent temperature are tradition-
ally used to assess thermal stress exposure in epidemiological
studies.11,18 However, it is well known that the human body does
not selectively perceive and respond to an individual climatic
factor and that human thermophysiology is not a function of only
air temperature.31 Thus, rather than only considering singular air
temperature, it has been suggested that estimation of thermal–
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health outcomes should be based on thermophysiological metrics
(hereon, biothermal metrics) that account for the total thermal
environment (air temperature, radiant temperature, humidity,
and wind), activity (metabolic heat production), and clothing
properties.31–33 Several comparative studies34–36 and a compre-
hensive evaluative study32 have been conducted and four biothermal
metrics were recommended recently as appropriate for thermal–
health studies and warning systems.32 Among them, the modern
Universal ThermalClimate Index (UTCI)was reportedmost suitable
because it best simulates the thermal response of the human body
and has relatively high climatic sensitivity.34,35,37,38 Recent applica-
tions of UTCI in thermal–health warning systems, operational
weather forecasting, medical, and epidemiologic fields have been
reviewed elsewhere.39,40 So far, few studies have applied biothermal
metrics in perinatal epidemiology,41–45 and none for SGAandLGA.

To address the stated limitations, we assessed space–time-
varying UTCI from preconception periods46,47 to birth and applied
Cox proportional hazard (Cox PH) regression nested within
DLNM24,29,30 to examine the maternal exposure to average
weekly, monthly, and cumulative UTCI and the hazards of
SGA and LGA. We identified potential critical periods of sus-
ceptibility and sociodemographically vulnerable subpopulations
to inform targeted clinical and public health interventions.

Methods

Study Area, Design, and Population
Western Australia is the largest state by area in Australia, cover-
ing 2.6 million km2 with a total population of 2.8 million.48 We
conducted a population-based retrospective cohort study from 1
January 2000 to 31 December 2015 in Western Australia using a
de-identified Midwives Notification System (MNS) from the
Western Australia Department of Health. The MNS is a statutory
routine birth records data collection system that includes all births
with ≥20 completed gestational wk or ≥400 g fetal weight if the
gestational length is unknown.49 The MNS contains sociodemo-
graphic and clinical information on both mother and baby,
including maternal residential address as statistical area level 1
(SA1) at the time of birth delivery. The second smallest geo-
graphical unit in Australia, the SA1s are variable in geographic
size with a median of 19 hectares and an average population of
400 individuals.50 From a total of 474,835 births, we excluded
births with missing SA1 (n=35,352), gestational age (n=1,021)
or sex (n=5). We also excluded multiple births (n=13,018),
births with questionable birth weight of <400 g or >6,000 g
(n=858),51,52 gestational age outside the range of 22–42 com-
pleted wk (n=768), and births to mothers >50 years of age
(n=7). To account for the potential fixed or truncated cohort
bias,53,54 we created a cohort defined by the date of conception
and further excluded pregnancies with conception dates <22 wk
before the beginning of the cohort (women who conceived before
31 July 1999, n=7,309) and at >42 wk before the cohort ended
(women who conceived after 12 March 2015, n=1,433).54,55

Five births that did not have a compatible address for exposure
assignment were excluded. The final sample included in this
study was 385,337 singleton term births (Figure S1). Using term
births enabled estimation of direct effects of the exposure on fetal
growth independent of preterm birth,19,56,57 as well as complete
exposure histories up until the 37th completed gestational wk for
all births to minimize bias.58

Outcomes Assessment
Adverse birth weight for gestational age outcomes considered
were SGA and LGA. Gestational age was calculated from the

perinatal records as the difference between the date of birth and
start of pregnancy based on the best available clinical estimates
from ultrasonography, or last menstrual period if ultrasound was
not available. SGA and LGA were defined as births with birth
weight below the 10th centile and above the 90th centile, respec-
tively, for specific gestational age and sex using the study
population.

Covariates
The covariates, including sociodemographic factors, biological
factors, and medical or clinical information on both mothers and
neonates were selected a priori from the birth records as potential
confounders based on biological and epidemiological evidence
in the literature18,24,52,55,59 and availability in our data set. This
included sex (male or female), year index variable for year of
conception (1999= 1 to 2015=17), calendar month of concep-
tion (1 to 12), maternal age as a continuous variable, marital
status (married or unmarried), smoking during pregnancy (non-
smoker or smoker), parity (nulliparous or multiparous), and a
remoteness indicator (urban or rural). Several race/ethnicity cate-
gories were originally defined in the birth record data. These
were Caucasian, Asian, Indian, African/Negroid, Polynesian,
Maori, Aboriginal/Torres Strait Islander, Aboriginal not Torres
Strait Islander, Torres Strait Islander not Aboriginal, Aboriginal
and Torres Strait Islander, and Other.49 However, because of the
small sample size for some minority groups and ethical concerns,
race/ethnicity was categorized as Caucasian (European ancestry)
or non-Caucasian. The area-level Index of Relative Socio-
economic Disadvantage derived by the Australian Bureau of
Statistics60 was assigned to the maternal residence at the time of
delivery and categorized into tertiles to define high, moderate,
and low socioeconomic status (SES). The few births without
smoking status (n=7), SES (n=21), and the remoteness indica-
tor (n=134) were assigned a separate category as “unknown.”

Exposure Assessment
Biothermal stress was assessed using UTCI from the global
gridded fifth generation of the European Centre for Medium-
Range Weather Forecasts–Human analysis thErmAl comforT
(ERA5-HEAT) reanalysis data set.61 UTCI is an equivalent air
temperature (in degrees Celsius) under reference conditions that
has the same thermophysiological impact on humans under actual
thermal environment.37 UTCI was developed based on the
advanced Fiala’s multi-node human physiology and thermal com-
fort model that includes the complete human heat budget and ther-
mophysiological response of an average person under reference
conditions.32,37,62 The reference nonmeteorological conditions are
based on a person walking at a speed of 4 km=h and a rate of meta-
bolic heat production of 2.3 metabolic equivalents of task (MET)
(i.e., 135W=m2). The meteorological reference conditions are
wind speed of 0:5 m=s measured at 10 m above the ground, mean
radiant temperature equal to air temperature (no thermal irradia-
tion), and a relative humidity of 50% or a constant vapor pressure
of 12 hPa (relative humidity was capped at a vapor pressure
of 20 hPa for air temperature >29�C).38 As described in detail
elsewhere,61 UTCI at an hourly time step and 0:25� ×0:25�

(∼ 25 km×25 km) spatial resolution was calculated via a 6-order
polynomial equation with four gridded input data: mean radiant
temperature and ERA5 retrievals for both air temperature and rela-
tive humidity at 2 m above ground level, and for wind speed at
10 m above ground level with reference to thermophysiological
and heat exchange conditions.37,38,61 In this study, we obtained
24-h averages for daily gridded UTCI from the Copernicus
Climate Data Store61 between 1 January 1999 and 31 December
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2015 over Australia and processed the UTCI at the SA1 levels in
Western Australia usingArcGIS software (version 10.8.1; Esri).

For each birth, we assigned daily UTCI exposures from
12 wk preconception21,24,47 through to birth based on dates of
conception and birth and SA1 of the maternal residential
address. Weekly (7-d average) exposures were calculated from
12 wk before conception (−11 to 0 wk) to birth (1 to 42 wk).
For births with gestational age of <42 wk, exposure was set at
zero for the weeks after delivery.24,63,64 The maximum number
of exposure weeks was therefore 54. Although collinearity is
minimized in DLNM methodology, the results of the individual
weeks in DLNM could still be biased by temporal collinear-
ity,65,66 and we also do not know which exposure period assess-
ments (weeks, months, or trimester) is more relevant to identify
the critical susceptible period for a given exposure–outcome
relationship. We, therefore, additionally assessed monthly ex-
posure from 3 months (90 d) preconception to birth by assum-
ing that each gestational month has 30 d. Trimester-specific
UTCI averages (1–13, 14–26, and 27–birth delivery gestational
wk) and other cumulative exposures, such as preconception
through pregnancy, entire pregnancy (conception to birth), and
preconception (average of 12 wk before pregnancy), were also
calculated.

Statistical Analyses
Main and subgroup analyses. We applied DLNMs with Cox PH
regression to estimate weekly and monthly specific time-varying
effects of maternal exposure to biothermal stress (using the
UTCI) on SGA and LGA by using gestational age in weeks as
the underlying timescale and each SGA and LGA as a dichoto-
mous outcome.24,63,67–71 The modeling framework is described
according to the following formula:

hiðtjx,CÞ= h0ðtÞexpðbxt +ƁCÞ,
where h is the hazard; i is the ith birth; x denotes the cross-basis
matrix for weekly or monthly biothermal stress exposure at week
or month t and the lags; C denotes the set of covariates; b and Ɓ
are coefficients of the exposure and covariates, respectively; and
h0(t) denotes the baseline fetal growth hazard at week or month
t (i.e., the hazard function for a birth whose exposures and covari-
ates are all equal to 0). The bidimensional cross-basis function
was constructed with the DLNM framework for simultaneous
analysis of weekly or monthly exposure–lag–response associa-
tions29,30 to identify potential critical susceptible exposure win-
dows.24,67,68 To flexibly capture any nonlinear and delayed
effects of the biothermal stress, both exposure–response and lag–
response associations (maximum lag was set at 54 wk) were
modeled as natural cubic splines with several combinations of 2
to 7 degrees of freedom (df), assuming smooth variation across
exposure periods. The linear relationship of the exposure–
response function was also tested. Based on the minimum Akaike
Information Criterion (AIC) comparisons, dfs of 6 and 3 for ex-
posure–response and lag–response associations, respectively,
were used for the final analyses.29,30,72 We estimated both weekly
and monthly hazard ratios (HRs) and the 95% confidence intervals
(95% CIs).24,67,68 We first employed the Schoenfeld residual test
to check the assumptions of the Cox PH model and specified time-
by-covariate interaction terms for covariates that violated the pro-
portional hazards assumption.67,73,74 The HRs (95% CIs) of the
biothermal stress exposures at the moderate (10th, 90th centiles),
severe (5th, 95th centiles), and extreme (1st, 99th centiles) of
UTCI exposures, using median UTCI as the reference, were
estimated.71

Furthermore, cumulative effects of the biothermal stress
during preconception, entire pregnancy, and each trimester-
average exposure were also evaluated using separate standard
Cox PH models without the cross-basis function of the expo-
sure. Average exposures for the preconception and entire preg-
nancy periods were included together to minimize the bias in
the effect estimates if separate models were used. Similarly, all
three trimester exposures were included simultaneously in the
model instead of separate models for each trimester-average
exposure.28,54,59 To estimate the nonlinear effect of each cumu-
lative exposure period with a standard Cox PH model, we
used the one-basis function of the dlnm R package to construct
unidimensional or nonlagged exposure–outcome associations
using natural splines with the following dfs based on lowest
AIC29,30,72: 5 df for preconception and entire pregnancy and
2 df for the three trimester-average exposures for SGA, and 2
df for all cumulative exposures for LGA. All the models were
adjusted for the potential confounders described earlier. Maternal
age was modeled as a continuous variable using natural splines
with 3 df.75,76

To explore the potential for effect modification, we conducted
stratified analyses by infant sex (male or female), race/ethnicity
(Caucasian or non-Caucasian), maternal age at delivery (<35 or
≥35 years of age), SES (high, moderate, low), remoteness (urban or
rural), maternal smoking status (nonsmoker or smoker), parity (nul-
liparous or multiparous), and pregnancy complications (yes or
no for gestational diabetes, preeclampsia, placental abruption,
premature rupture of membrane, asthma, urinary tract infection,
threatened miscarriage, and threatened preterm birth). These
analyses used preconception-through-pregnancy cumulative
exposure. The HRs (95% CIs) at the 1st and 99th centiles, rel-
ative to the median UTCI were estimated for each subgroup
and further compared as the ratio of hazard ratios (RHRs,
with 95% CIs) by performing the Altman and Bland test of
interaction.77,78

Sensitivity Analyses
Several sensitivity analyses were performed to ascertain the
credibility of the weekly specific results. a) Mean rather than
median UTCI was used as the reference. b) The dfs in the natu-
ral cubic spline was increased by one (that is 7 for exposure pre-
dictor and 4 for lag period) in the cross-basis function of the
DLNM. c) Maternal age was included as a categorical variable
(≤19, 20–34, ≥35 years of age) instead of as a natural spline of
the continuous covariate. d) Seasonality was adjusted with four-
season categories (fall, winter, spring, summer) instead of cal-
endar month index. e) Weekly exposures from conception to
birth were analyzed (that is, preconception exposures were
excluded). f) Trimester-average exposures were analyzed in
three separate models instead of concurrent analysis in a single
model. g) All eligible singleton births with 22–42 gestational
wk were analyzed. h) Logistic regression was used instead of
Cox regression as reported in the only available previous study
that implemented DLNM methodology for temperature and
SGA.10

All statistical analyses were performed using the statistical
software R (version 4.2.1; R Development Core Team), and
main R packages dlnm and survival were used. We reported and
interpreted the HRs (95% CIs) without considering any statisti-
cally significant threshold, as recommended by the American
Statistical Association.79 The R codes are provided in the
Supplemental Material (“Appendix 1. R syntax for DLNMs Cox
regression”).

This study was conducted in accordance with the Declaration
of Helsinki. Ethical approval has been obtained from the Human
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Research Ethics Committees (HREC) at Curtin University
(#HRE2020-0523) and Western Australia Department of Health
(#2016/51). Participants’ informed consent was waived given
that we used retrospective routinely collected de-identified data
sets, obtaining retrospective consent was impractical for our large
cohort, and it was deemed by the HRECs that the benefits of this
study outweighed the risk of harm.

Results

Characteristics of Study Population and Biothermal Stress
Exposure
This study included 385,337 singleton term births, of which
37,705 (9.8%) were SGA and 38,223 (9.9%) were LGA. Slightly
more than half of the births were male (51.0%), and the majority
were born to mothers who were Caucasian (78.7%), married
(87.7%), nonsmokers (85.8%), multiparous (58.3%), and urban
residents (62.0%) and had a complicated pregnancy (63.4%).
Mothers were almost equally distributed among the four seasons
of conception (Table 1). The average exposure to UTCI (bio-
thermal stress) over the full exposure period ranged from 8.1°C
to 30.0°C with approximately equal mean (14:5± 2:5˚C) and
median (14.2°C). The UTCI distributions for the exposure peri-
ods tended to be within the range of 9–26°C, consistent with the
standard categories of no thermal stress.80 The specific average
exposures for preconception, pregnancy, and each trimester
were similar to the overall preconception to birth exposures
over the 12-wk preconception through pregnancy periods. The
number of births exposed at the 1st, 5th, 10th, 90th, 95th, and
99th centiles of UTCI were 663, 1,379, 3,485, 5,657, 175, and
290 births, respectively (Table 2).

Biothermal Stress Exposures and the Hazards of Term SGA
and LGA
Compared with the median UTCI (14.2°C) as reference, exposure
to various centile thresholds of weekly UTCI showed lower haz-
ards of SGA during preconception periods up to the 10th gesta-
tional week and then increased thereafter up to birth, especially
for 1st (10.3°C) and 95th (17.3°C) centiles exposure. Strong posi-
tive associations were found toward the end of pregnancy. For
example, a 2% higher hazard of SGA was found at the 42nd ges-
tational wk (HR=1:02; 95% CI: 1.01, 1.04) for the 1st centile ex-
posure (Figure 1; Table S1). As compared with the median
exposure, weekly UTCI exposure showed very small positive
associations or almost no association with the hazard of LGA
(Figure 1). The strongest positive association was a 1% higher
hazard of LGA (HR=1:01; 95% CI: 1.00, 1.02) during the 36th–
42nd gestational wk period for exposure to the 95th centile rela-
tive to the median UTCI (Table S2). Monthly UTCI exposure
showed similar patterns but with stronger magnitudes of positive
associations than the weekly exposure. The critical susceptible
periods were 6th–10th gestational months, especially for 1st cen-
tile exposure, as compared with the median exposure with the
strongest HRs of 13% for SGA (HR=1:13; 95% CI: 1.10, 1.14)
and 7% for LGA (HR=1:07; 95% CI: 1.03, 1.11) in the 10th
month (Figure 2; Tables S3 and S4).

As compared with the median UTCI, cumulative exposures
(preconception through to birth, preconception, and entire preg-
nancy) generally showed negative associations at the 1st centile
exposure but positive associations at the 99th centile exposure.

Table 2. Descriptive statistics of the average UTCI (in degrees Celsius) during each exposure period, from 12 wk preconception through delivery, for included
singleton term births in Western Australia, 2000–2015 (N =385,337).

Exposure periods Min Mean±SD Median P1 P5 P10 IQR P90 P95 P99 Max

Preconception through pregnancya 8.1 14:5± 2:5 14.2 10.3 11.9 12.8 1.2 15.4 17.3 26.0 30.0
Preconception only 1.4 14:4± 5:2 14.0 5.8 7.6 8.2 8.8 20.8 22.0 29.4 35.8
Entire Pregnancy 6.6 14:5± 2:8 14.2 9.7 11.3 11.9 2.9 16.7 18.0 26.7 32.7
Trimester
First 1.7 14:5± 5:2 14.2 5.9 7.7 8.3 8.9 20.9 22.0 29.6 36.0
Second 1.6 14:6± 5:1 14.2 6.1 7.8 8.5 8.7 20.9 22.0 29.8 36.1
Third 1.7 14:5± 5:1 14.1 6.1 7.7 8.4 8.7 20.8 21.9 29.6 35.6

Note: max, maximum; min, minimum; IQR, interquartile range = P75–P25; P1–P99, 1st–99th centiles; SD, standard deviation; UTCI, Universal Thermal Climate Index.
aNumber of births at the 1st to 99th centiles of UTCI exposure were 663, 1,379, 3,485, 5,657, 175, and 290 births, respectively.

Table 1.Maternal characteristics of included singleton term births in
Western Australia, 2000–2015 (N =385,337).

Characteristics n (%)

SGA
No 347,632 (90.2)
Yes 37,705 (9.8)
LGA
No 347,114 (90.1)
Yes 38,223 (9.9)
Infant sex
Male 196,384 (51.0)
Female 188,953 (49.0)
Maternal age (y)
≤19 17,170 (4.5)
20–34 291,366 (75.6)
≥35 76,801 (19.9)

Race/ethnicity
Caucasian 303,375 (78.7)
Non-Caucasiana 81,962 (21.3)
Marital status
Married 337,801 (87.7)
Unmarried 47,536 (12.3)
Pregnancy complications
No 244,238 (63.4)
Yes 141,092 (36.6)
Smoker
No 330,651 (85.8)
Yes 54,679 (14.2)
Unknown 7 (0.0)
Parity
Nulliparity 160,731 (41.7)
Multiparity 224,606 (58.3)
Remoteness indicator
Urban 238,826 (62.0)
Rural 146,377 (38.0)
Unknown 134 (0.0)
SES
High 127,831 (33.2)
Moderate 128,439 (33.3)
Low 129,046 (33.5)
Unknown 21 (0.0)
Season of conception
Fall 93,678 (24.3)
Winter 97,982 (25.4)
Spring 97,250 (25.2)
Summer 96,427 (25.0)

Note: LGA, large for gestational age at >90% birth weight; SES, socioeconomic status;
SGA, small for gestational age at <10% birth weight.
aNon-Caucasian included races or ethnicities defined in the birth record as Asian/Indian
(N =36,303), African/Negroid (N =5,149), Aboriginal/Torres Strait Islander/Polynesian/
Maori (N =24,161), andOther (N =16,349).
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The strongest hazards were 11% higher hazard of SGA during
the entire pregnancy (HR=1:11; 95% CI: 1.04, 1.18) and 4%
higher hazard of LGA during preconception through to birth
(HR=1:04; 95% CI: 0.98, 1.11) at 99th centile as compared
with the median exposure. Preconception exposure showed small
magnitude of higher hazard, particularly at the 1st centile exposure
for SGA and the 99th centile exposure for LGA (Table 3; Table
S5 and Figure S2). For trimester-average exposures, the strongest
hazards were 8% higher hazard of SGA during the second trimes-
ter (HR=1:08; 95% CI: 1.00, 1.17) and 10% higher hazard of
LGA during the 1st trimester (HR=1:10; 95% CI: 1.03, 1.18) for
exposure to 99th centile as compared with the median exposure
(Table 3; Table S5 and Figure S3).

We observed higher hazards of adverse fetal growth in some
vulnerable subpopulations for exposures at the 1st and 99th centi-
les as compared with the median UTCI, particularly for SGA at
the 99th centile exposure (Table S6). Comparing the RHRs

between groups showed elevated hazard at the 99th centile expo-
sure for SGA (RHR=1:07; 95% CI: 0.96, 1.19) and at the 1st
centile exposure for LGA (RHR=1:02; 95% CI: 0.93, 1.13) in
male births. The hazard was elevated in non-Caucasians for SGA
(RHR=1:28; 95% CI: 1.16, 1.40) at the 99th centile exposure,
but there was no obvious difference for LGA. The hazard was
elevated for SGA (RHR=1:10; 95% CI: 0.96, 1.25) and slightly
lowered for LGA (RHR=0:87; 95% CI: 0.73, 1.05) in unmarried
mothers at the 99th centile exposure. For mothers ≥35 years of
age, the hazard was elevated slightly at the 1st centile exposure
for SGA (RHR=1:01; 95% CI: 0.84, 1.21) and elevated for
LGA at both the 1st centile exposure (RHR=1:09; 95% CI:
0.96, 1.23) and the 99th centile exposure (RHR=1:04; 95% CI:
0.88, 1.23). The hazard was elevated for SGA at the 1st centile
exposure in mothers with moderate SES (RHR=1:02; 95% CI:
0.81, 1.29) and for LGA at 99th centile exposure in mothers
with low SES (RHR=1:15; 95% CI: 0.99, 1.34) as compared

Figure 1. Adjusted HRs of SGA and LGA associated with the weekly specific UTCI over the 12-wk preconception (−11 to 0) through to gestational week at
delivery (1 to 42) at different thresholds of UTCI using the median of 14.2°C as reference. Solid blue lines represent point estimates, and the shaded area repre-
sents 95% CIs. DLNM Cox proportional hazard models were adjusted for infant sex, maternal age, race/ethnicity, marital status, smoking status, parity, remote-
ness, socioeconomic status, and year and month of conception. Numeric data can be found in Tables S1 and S2. Note: CI, confidence interval; DLNM,
distributed lag nonlinear models; HR, hazard ratio; LGA, large for gestational age at >90% birth weight; SGA, small for gestational age at <10% birth weight;
UTCI, Universal Thermal Climate Index in degrees Celsius.
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with high SES residents. The hazard was elevated, although
with extremely high imprecision, at the 99th centile exposure
for SGA (RHR=36:67; 95% CI: 1.52, 888.54) and at the 1st
centile exposure for LGA (RHR=1:45; 95% CI: 1.04, 2.04) in
rural residents. The hazard was greater for SGA (RHR=1:22;
95% CI: 1.09, 1.37) and LGA (RHR=1:03; 95% CI: 0.87, 1.06)
at the 99th centile exposure in mothers who smoked during preg-
nancy. The hazard was elevated for SGA at the 1st centile expo-
sure (RHR=1:12; 95% CI: 0.99, 1.27) but lowered slightly for
LGA at both the 1st and the 99th centiles exposure in nulliparous
mothers. There was no obvious difference for SGA, but the haz-
ard was elevated inmothers with pregnancy complications for LGA
at the 99th centile exposure (RHR=1:21; 95% CI: 1.06, 1.38)
(Table 4).

Sensitivity Analyses
Our results did not change substantially after altering modeling
conditions (Figures S4–S9, Excel Tables S1–S12). In addition,
results of the trimester-average exposures analyzed in three sepa-
rate models showed higher hazards of SGA and LGA in second

and first trimesters, respectively (Figure S10 and Excel Table
S13) as found in the main analysis for the concurrent analysis of
all trimester-average exposures in a single model. Finally, the
results from DLNM logistic regressions were consistent with that
of the DLNM Cox PH regression (Figures S11 and Excel Tables
S14 and S15).

Discussion

Associations between Biothermal Stress and the Hazards of
Term SGA and LGA
This is the first study, to the best of our knowledge, to use a bio-
thermal stress metric (i.e., UTCI) to evaluate weekly and monthly
specific preconception to birth exposures and the hazards of term
SGA and LGA. Both weekly and monthly specific exposures
showed similar patterns of the association with higher hazards of
adverse fetal growth, especially for SGA, which increased to-
ward the end of the pregnancy. Monthly specific exposures
showed higher HRs than weekly specific exposures at 6–10 ges-
tational months, especially at the 1st centile exposure compared

Figure 1. (Continued.)
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with median exposure, suggesting potential critical windows of
susceptibility for both SGA and LGA. The cumulative precon-
ceptional exposure analysis showed positive associations, par-
ticularly for LGA at higher exposure. Entire pregnancy and
trimester-average exposures showed relatively strong positive
associations at the 99th centile exposure as compared with the me-
dian exposure for both SGA and LGA. The trimester-average
exposures showed the strongest HRs during the second and first
trimesters for SGA and LGA, respectively. The identified higher-
risk subpopulations were male births, and births by mothers who
were non-Caucasian, smokers, and rural area residents for both
SGA and LGA. Births by mothers ≥35 years of age were at higher
hazards, especially for LGA at both extreme thresholds of expo-
sure. Births by mothers with moderate SES were at higher hazard
of SGA, whereas mothers with low SES were at a higher hazard
of LGA as compared with those with a high SES.

Results from few previous studies, with inconsistent findings
are available for comparison for SGA10,19–21 but none for LGA, to
the best of our knowledge. Of these, only one study reported
weekly heat metrics (mean temperature and mean heat index) and

the odds of SGA on 4,442 births in Boston, USA.10 Contrary to our
findings, that study found essentially no obvious association of ei-
ther mean temperature or mean heat index with the odds of SGA
for a 5°C increase in mean weekly specific exposures. The authors,
however, found positive associations for weekly specific and cu-
mulative exposures with a 1°C increase in standard deviation of
temperature and heat index where the strongest odds of SGA were
found between the 9th–26th gestational wk and the second trimes-
ter.10 This could imply that the low variability in the mean weekly
temperature or simple heat index exposure was insufficient to
detect any clear association with SGA. This could also explain
why we found stronger positive associations with monthly than
weekly specific exposures. Because changes in birth weight for ges-
tational age may not be obvious within short intervals, monthly spe-
cific exposure assessment could better detect susceptible critical
periods of the impact of thermal stress on SGA and LGA. However,
weekly specific higher temperatures have been associated with
impaired ultrasound anthropometric measurements, such as biparie-
tal diameter, head circumference, femur length, abdominal circum-
ference, and term birth weight.58 Importantly, temperature or simple

Figure 2. The exposure–response association between maternal monthly specific UTCI exposures for 3 months preconception through to gestational month at
delivery with reference to median 14.2°C and the HR (95% CI) of SGA and LGA. Numeric data can be found in Tables S3 and S4. DLNM Cox proportional
hazard models were adjusted for infant sex, maternal age, race/ethnicity, marital status, parity, maternal smoking, remoteness, areal-level socioeconomic status,
year, and month of conception. Note: CI, confidence interval; DLNM, distributed lag nonlinear models; HR, hazard ratio; LGA, large for gestational age at
>90% birth weight; SGA, small for gestational age at <10% birth weight; UTCI, Universal Thermal Climate Index in degrees Celsius.
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heat index could have underestimated the effects of the exposure as
compared with using UTCI.32,33 These differences have been
reported in other thermal–health outcomes studies that compared
the UTCI with other thermal metrics (including temperature) with
the recommendation to use UTCI in future studies,81–83 supporting
the recommendation in the recent reviews.32,33,39

Our results of lower hazards of SGA at low exposure thresh-
olds and higher hazard at high exposure thresholds over the
entire pregnancy period with similar magnitude was consistent
with the results from a large cohort study conducted in the
United States on nearly 30 million singleton term births.19 That
study found that entire pregnancy-average temperatures between
the county-specific 80th–90th centile and above the 90th centile
were associated with a 3% higher [odds ratio ðORÞ=1:03; 95%
CI: 1.02,1.04] and 4% higher (OR=1:04; 95% CI: 1.03,1.054)
odds of SGA, respectively, relative to 40th–50th centile expo-
sure.19 In contrast, an analysis of 56,141 singleton term births,
including 15.4% term SGA in southern Israel reported that the
highest quartile ambient temperature was associated with 9%
lower odds of SGA (OR=0:91; 95% CI: 0.84, 0.99), whereas
the lowest quartile ambient temperature was associated with
18% higher odds of SGA (OR=1:18; 95% CI: 1.09, 1.29) as
compared with the two intermediate quartiles over the entire
pregnancy.20 Our findings showed that although preconceptional

exposure showed no clear association with SGA as reported pre-
viously,21 it showed small positive associations with LGA at
high exposure levels.

Regarding the trimester-average exposures, our results were
similar to that of a large cohort study that found that high temper-
ature was associated with higher odds of SGA during both second
and third trimesters (stronger in the second semester) and low
temperature showed no association with relative odds of SGA.19

Again, there were other discrepant findings, such as no associa-
tions with cumulative exposures by trimesters,10,21 and high tem-
perature associated with lower odds of SGA during first trimester
and higher odds during third trimester.20 Such discrepancies may
be due to geographical differences in thermal or temperature
distributions even within the same setting, acclimatization, adap-
tation or mitigation strategies, differences in study design, charac-
teristics of study population, exposure assessment method, and
exposure thresholds.10,19,21,42 Trimester-specific results from all
the previous studies were based on separate models for each tri-
mester.10,19–21 Our sensitivity results for the separate trimester-
specific models were consistent with that of the main results that
included all trimesters concurrently in a single model. Our findings
from both weekly and monthly specific exposures indicated that
late gestation periods are potential critical susceptible periods,
which differed from our findings from trimester-average exposures

Figure 2. (Continued.)
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where second and first trimesters were critical susceptible periods
for SGA and LGA, respectively. This difference has been demon-
strated in a simulation study and indicated that the analyses of
trimester-average exposures could result in biased estimates and
incorrect critical susceptible periods for which reason distributed
lag model should be preferred to trimester-average exposure mod-
els.28 For LGA, our findings are novel because there is currently
no known such evidence in the literature, suggesting the need for
further related studies on LGA to contribute to the evidence-base,
which has also been proposed for studies on air pollution expo-
sure.22–24

The differences in the sensitivity to exposures, degree of the cli-
mate extremes, population characteristics, such as sociodemo-
graphic and underlying health conditions, acclimatization, and
adaptation or mitigation measures, determine the vulnerability of
the population to biothermal stress exposures.20,45 These could
explain the high risks of adverse fetal growth in vulnerable subpo-
pulations, such as male births and births bymothers whowere non-
Caucasian, smokers, of low or moderate SES, ≥35 years of age,
and rural area residents. Male fetuses have low plasma anti-
inflammatory capacity to counteract the inflammatory responses
due to thermally induced oxidative stress.84 Female fetuses also
respond to reduced maternal nutrition and moderation in placental
physiology and show a better response to higher levels of reactive
oxygen species and maternal glucocorticoids than males, which
may reduce the risk of adverse fetal growth in female births as com-
pared with male births.85 Higher risks in non-Caucasians, mothers
with moderate or low SES, and rural area residents may be
explained by factors such as underutilization of antenatal care serv-
ices, lack of mitigation strategies (e.g., use of heating or cooling
systems), and higher involvement in outdoor activities or outdoor
work.86 Racial/ethnic reproductive health inequalities have also
been attributed to systemic discrimination, as well as residential
and housing segregation.87

Appropriate public health interventions, such as actively rais-
ing the awareness of the risk of exposure to extreme climate
events to minimize outdoor activities, use of air conditioning,
the shift to sustainable non–fossil-based energy and greening
the environment, thermal–health warning systems, and other cli-
mate governance policies, are required.42,43,86,88 These measures
are critically important for achieving the United Nations’
Sustainable Development Goals 3 and 1389 to ensure that the
health outcomes at birth are not affected by the changing climate
with serious health implications.13,88,90

Biological Mechanisms
The biologicalmechanisms ofmaternal exposure to thermal or bio-
thermal stress and fetal growth have not been completely eluci-
dated. However, in vivo studies provide convincing plausible
pathophysiological pathways, particularly for fetal growth restric-
tion resulting in SGA.16,91,92 The general physiological changes
during pregnancy and fetal metabolic activities increase thermal
vulnerability of pregnant women that affect their thermoregulatory
capacity.43,93 Exposure to extreme thermal environments increases
thermal strain during pregnancy, causing hypo- or hyperthermia.
This can induce oxidative stress, heat shock, and inflammatory
responses, and reduce uterine blood flow that affect placental
growth, and cause placental dysfunction as demonstrated in ex-
perimental animal studies.16,91,92 Consequently, both passive
and active maternal-to-fetal transport of oxygen and nutrients is
affected and has been observed to be profound at mid- to late-
pregnancy periods.15 These cause fetal hypoxemia and hypogly-
cemia, which slow fetal growth and alter fetal metabolic and
endocrine activities, resulting in abnormal fetal growth.15,17,91 It
was also found that maternal inflammation at the mid-gestational

Table 4. The estimated interaction effects as RHR (95% CI) of SGA and
LGA, relative to the indicated reference subgroup over preconception
through to pregnancy with cumulative exposure to 1st and 99th centiles of
UTCI relative to median UTCI in Western Australia, 2000–2015.

Subgroup [n (%)]
UTCI
centile SGA LGA

Male: 196,384 (51.0)
[Ref: female: 188,953

(49.0)]

P1 0.96 (0.85, 1.08) 1.02 (0.93, 1.13)
P99 1.07 (0.96, 1.19) 1.00 (0.88, 1.14)

Non-Caucasian: 303,375
(78.7)

[Ref: Caucasian: 303,375
(78.7)]

P1 1.09 (0.94, 1.26) 0.87 (0.75, 1.00)
P99 1.28 (1.16, 1.40) 1.00 (0.87, 1.15)

Unmarried: 47,536 (12.3)
[Ref: married: 337,801

(87.7)]

P1 1.06 (0.90, 1.25) 0.94 (0.80, 1.10)
P99 1.10 (0.96, 1.25) 0.87 (0.73, 1.05)

≥35 years of age: 76,801
(19.9)

[Ref: <35 years of age:
308,536 (80.1)]

P1 1.01 (0.84, 1.21) 1.09 (0.96, 1.23)
P99 0.93 (0.79, 1.11) 1.04 (0.88, 1.23)

Low SES: 129,046 (33.5)
[Ref: high: 127,831 (33.2)]

P1 0.94 (0.66, 1.34) 1.03 (0.88, 1.21)
P99 0.64 (0.55, 0.76) 1.15 (0.99, 1.34)

Moderate SES: 128,439
(33.3)

[Ref: high: 127,831 (33.2)]

P1 1.02 (0.81, 1.29) 0.93 (0.80, 1.07)
P99 0.78 (0.35, 1.73) 0.59 (0.31, 1.12)

Rural: 146,377 (38.0)
[Ref: urban: 238,826

(62.0)]

P1 2.11 (0.97, 4.57) 1.45 (1.04, 2.04)
P99 36.67 (1.52, 883.54) 2.20 (0.96, 5.04)

Smoker: 54,679 (14.2)
[Ref: nonsmoker: 330,651

(85.8)]

P1 0.99 (0.87, 1.13) 1.00 (0.86, 1.17)
P99 1.22 (1.09, 1.37) 1.03 (0.87, 1.22)

Nulliparity: 160,731 (41.7)
[Ref: multiparity: 224,606

(58.3)]

P1 1.12 (0.99, 1.27) 0.95 (0.85, 1.06)
P99 1.02 (0.90, 1.13) 0.89 (0.77, 1.03)

Complicated pregnancy:
141,092 (36.6)

[Ref: uncomplicated preg-
nancy: 244,238 (63.4)]

P1 0.94 (0.83,1.06) 1.00 (0.90, 1.11)
P99 1.00 (0.90, 1.11) 1.21 (1.06, 1.38)

Note: DLNM Cox proportional hazards model was adjusted for infant sex, maternal age,
race/ethnicity, marital status, parity, maternal smoking, remoteness, areal-level SES,
year, and month of conception. These analyses used preconception through pregnancy
cumulative exposure. For each model, the subgroup of the covariate investigated was
not adjusted for. CI, confidence interval; DLNM, distributed lag nonlinear models;
LGA, large for gestational age at >90% birth weight; P1 and P99, 1st and 99th centiles;
Ref, reference; RHR, ratio of hazard ratios; SES, socioeconomic status; SGA, small for
gestational age at <10% birth weight; UTCI, Universal Thermal Climate Index.

Table 3. The exposure–response association as HR (95 % CI) of SGA and
LGA, between maternal cumulative UTCI exposures from preconception
through pregnancy and over trimester-specific periods with reference to the
median, 14.2°C.

Exposure period UTCI centile SGA LGA

Preconception
through pregnancy

P1 0.96 (0.90, 1.01) 0.94 (0.89, 0.98)
P99 1.07 (1.01, 1.12) 1.04 (0.98, 1.11)

Preconception P1 1.01 (0.96, 1.06) 0.94 (0.91, 0.98)
P99 0.98 (0.91, 1.05) 1.03 (0.95, 1.11)

Pregnancy P1 0.96 (0.91, 1.02) 0.97 (0.92, 1.01)
P99 1.11 (1.04, 1.18) 1.03 (0.95, 1.11)

Trimester
First P1 1.00 (0.95, 1.05) 0.94 (0.89, 1.00)

P99 1.00 (0.94, 1.06) 1.10 (1.03, 1.18)
Second P1 0.98 (0.94, 1.02) 1.02 (0.98, 1.07)

P99 1.08 (1.00, 1.17) 0.99 (0.91, 1.08)
Third P1 0.99 (0.94, 1.05) 0.98 (0.92, 1.04)

P99 1.03 (0.97, 1.10) 1.01 (0.94, 1.09)

Note: HR (95% CI) of SGA and LGA are reported at various percentiles of the expo-
sure in Western Australia, 2000–2015. Standard Cox proportional hazards model was
adjusted for infant sex, maternal age, race/ethnicity, marital status, parity, maternal
smoking, remoteness, areal-level socioeconomic status, year, and month of concep-
tion. Preconception period was 12 wk prior to conception. CI, confidence interval;
HR, hazard ratio; LGA, large for gestational age at >90% birth weight; P1–P99, 1st–
99th centiles; SGA, small for gestational age at <10% birth weight; UTCI, Universal
Thermal Climate Index in degrees Celsius.
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stage impairs myoblast (stem cell) function, increases protein
catabolism, and reduces skeletal muscle growth near term.92

Moreover, fetal growth restriction in ewes was found to be an
adaptative mechanism at the expense of normal fetal growth and
development to hyperthermia-induced placental insufficiency to
preserve placental transport capacity of oxygen and nutrients.91

As compared with SGA, biological mechanisms linking envi-
ronmental exposures, such as thermal stress to LGA is not well-
understood, suggesting the need for more studies. The plausible
causal pathways are the known processes by which oxidative
stress and inflammation cause high blood glucose or hyperglyce-
mia, which can be transported to the developing fetus. The fetus
produces extra insulin, which together with the extra glucose or
fetal hyperglycemia, can lead to increase fetal growth and fat
deposition, resulting in an increased risk of LGA.94,95

Strengths and Limitations
Our study has several strengths. The use of the reportedly most
suitable available biothermal metric (i.e., UTCI) and the exposure
assessment with a spatially and temporally resolved grid are
major strengths of this study. The space–time-varying exposure
assessment reduces exposure misclassification as compared with
the conventional use of simple models or proximity to sparse
monitoring stations18 that tend to be distant from where people
reside, as well as excluding rural residents because monitoring
stations are often sited in cities and urban areas.20,42 Application
of DLNM nested in Cox PH regression is a further strength
because it allowed us to investigate the hazards of fetal growth at
finer temporal scales (i.e., gestational weeks and months) that are
less biased and may be biologically more relevant as compared
with trimester-based periods of exposure to detect critical suscep-
tible windows.28,30 Given the limited related research on SGA,11

no known previous evidence on LGA, and that no previous study
used a biothermal stress exposure metric, our findings have added
to and provided new epidemiological evidence to the literature.

Several limitations were also present in this study. Despite the
strength of being able to assess the individual-level exposure at the
second smallest geographical unit (i.e., the SA1), very fine spatial
resolution can potentially also introduce misclassification owing to
the lack of information on exposures in nearby areas, such as parks,
shopping centers, and other local-level community centers that
people access daily. So, it is potentially less accurate to assess ex-
posure at very fine spatial resolution targeted to the exact place of
residence. Residential mobility during pregnancy and activity–
time patterns were not accounted for. A recent review on maternal
relocation96 and simulation study97 found no impact of residential
mobility on the effect estimates of the exposure on adverse birth
outcomes. But a gold standard approach remains personalized real-
time exposure assessment by using mobile thermal sensors.98

However, this method is not feasible in large-scale studies.
Possible nondifferential exposure misclassification due to residen-
tial mobility, inability to incorporate daily activity patterns, time
spent outdoors or indoors, and use of air conditioning could have
biased the observed results toward the null.10,19,21 We did not have
data on many other important confounding or covariate factors,
such as maternal alcohol or illicit drug intake, educational level,
nutritional status, employment, infection (e.g., seasonal influenza),
maternal weight, height, and physical activity during pregnancy. A
few of these factors, however, were partly controlled through the
SES and remoteness variables. Both live and stillborn births were
examined, but we did not have information on early pregnancy loss
(miscarriages or spontaneous abortions), which could lead to
underestimating the effect estimates. This is because biothermal
stress in early gestational periods could preferentially result in
early pregnancy loss for the fetuses that are more susceptible to the

effects of the exposure on fetal growth.54 In addition, given that the
birth outcomes were assessed at birth, we were unable to examine the
effect of the exposure on in utero fetal growth trajectory given that
births with abnormal growth in early pregnancy could later catch up
and appear normal at birth. Thus, routine ultrasound anthropometric
measurements could provide some useful insight in future studies.58

Because of the complex uncertainties in future climate change sce-
narios, geographical variability, acclimatization, adaptation, or
mitigation strategies and changes in vulnerability of the underlying
population, the present exposure–response associations could not
be forecast into the future or extrapolated to other locations.42,99

Conclusion
Compared with the median UTCI exposure, both weekly and
monthly specific exposures at extreme centiles showed potential
critical windows of susceptibility of SGA and LGA that increased
toward the end of pregnancy. Cumulative preconceptional exposure
showed no association with the hazard of SGA, but an association
was found with a higher hazard of LGA at high exposure levels.
Entire pregnancy and trimester-specific average exposures showed
relatively strong positive associations at higher exposure levels as
compared with the median exposure for both SGA and LGA. The
strongest elevation in hazards were found during the second trimes-
ter for SGA and during the first trimester for LGA.Male births, and
births by mothers who were non-Caucasian, smokers, ≥35 years of
age, and resided inmoderate or low SES and rural areas were partic-
ularly vulnerable subpopulations who may require targeted thermal
mitigation strategies and resource allocations. Further studies
should take advantage of the leveraged technological advancements
for application of biothermal metrics, such as UTCI, rather than the
singular use of ambient temperature.31–33,40
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